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COMPUTATION OF DILUTE PARTICULATE LAMINAR FLOW 
OVER A BACKWARD-FACING STEP 

1. E. BARTON 
Division of Aerospace Engineering, Manchester School of Engineering, Manchester Universiq, oxfonl Road, 

Manchester A413 9PL, U K. 

SUMMARY 

Particle-laden flows are calculated for a classical laminar backward-facing step problem. The particle tracks are 
calculated using a recently developed exponential Lagrangian tracking scheme. The behaviour of the particle- 
laden flow is considered for various inlet for Reynolds number, Stokes numbers and void hctions. Doping the 
flow with low-Stokes-number particles has the effect of increasing the inlet inertia of the flow and this increases 
the strength of the recirculation behind the step. High-Stokes-number particles are dominated by graVitati0~1 
effects which affect the flow accordingly. Differences between the single-phase flow and the particle-laden flows 
are therefore dependent on the Stokes number and increase linearly with void fiaction. 
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INTRODUCTION 

Flow separation is a hdamental phenomenon in fluid mechanics. Particle-laden flows are also an 
interesting phenomenon mging fiom engineering processes to arterial systems. The present study 
investigates these phenomena by numerically predicting the behaviour of laminar particle-laden flow 
over a backward-facing step. Laminar flow over a backward-facing step is probably one of the simplest 
forms of flow separation. The backward-facing step geometry used in the present study has become a 
classical numerical benchmark, initiated by the numerical study of Annaly et al.' which included an 
experimental investigation. The geometry of the backward-facing step has an upper solid boundary 
above the step which simplifies the numerical boundary conditions. The laminar predictions by Armaly 
et al.' were fairly poor compared with the experimental data owing to an inadequate grid density, 
whilst subsequent hydrodynamic numerical predxtions found good agreement with the experimental 
data provided that the three-dimensional experimental effects are not signifi~ant.~-' The effects of the 
step height have been studied by Thangam and Knight6*' and the viscous drag from the upper 
boundary by Barton.' The problem has also been used to address numerical issues such as grid 
adaptati~n'~'~ and boundary conditions."*'* Laminar particle-laden flows have not been studied for the 
present geometry (to the best of the author's knowledge), although turbulent particle-laden flows for 
the geometry have been experimentally studied by Ruck and Maki~la . '~  The effect of the particles on 
the flow is assumed to be negligible because of the low number density of the particles. 

The present study considers how the particles introduced into the flow affects its behaviour. 
Different types of particles, aerodynamically classified by their Stokes number, affect the flow 
differently and the Stokes number is varied accordingly. The perturbation of the flow by the p d c l e s  
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Figure 1. Geometry of backward-facing step problem illustrating recirculation regions and presence of particles 

increases with the number density, which is also demonstrated in the present study. The problem and 
geometry are summarized in Figure 1. The channel expands forming the backward-facing geometry 
with an expansion ratio of 1:2. An entrance channel of 3h is used to prevent downstream effects 
travelling upstream, where h is the height of the step. The main channel is 32h long. The figure also 
illustrates the reattachment and separation lengths X I ,  x2 and x3. 

In the following sections the basic equations and solution procedure for the particulate two-phase 
flow are presented. The fluid phase is solved using the SIMPLE method14 which is discussed initially. 
The particle phase is solved using Lagrangian tracking and the effects of the particles on the flow field 
are introduced via source terms. 

GOVERNING EQUATIONS 

The governing equations for the fluid phase are the equation of continuity and the Navier-Stokes 
equations in two dimensions with some additional source terms: 

au 
-+--0, 
ax ay 

apu2 apuv ap 
ax ay ax 

-+-=-+p 

The only source terms necessary are the terms Sp” and S; which describe the interaction between the 
fluid and solid phases. In the Lagrangian approach for particle-laden flows the volume of the particles 
is neglected and only if the particle volume changes will there be a source term for the equation of 
continuity. The principle of using source terms to describe the interaction between phases was 
proposed by Migdal and Agosta” and developed into the particle-source-in-cell (PSIC) method.’6 
Alternatively, a particulate continuum model using the Eulerian approach could be used, but this 
method has the disadvantage that particles experience a dispersion effect caused by numerical 
difision.” As Brownian motion and diffusion effects have been ignored in the present study, the PSIC 
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method was considered more suitable. The PSIC method has become a wellestablished method for 
calculating particle-laden flows particularly for engineering problems.’* 

The numerical solution of the fluid phase is based on a solution procedure developed for single- 
phase flows developed by Patankar and Spalding.’’ The partial differential equations (1-3) are 
integrated over control volumes which form a computational grid over the problem domain. The grid 
used in the present study is shown in Figure 2. The grid uses 100 x 80 grid points. The size of the 
control volumes varies over the problem domain, with clustering of control volumes close to solid 
boundanes. The grid dependence was tested by comparing the reattachment and separation positions 
with coarser grids. The present reattachment and separations results are estimated to have an accuracy 
of about 1 % (the greatest error is associated with the separation position x2). The velocity and pressure 
terms are located on a staggered grid system developed for the marker-andcell (MAC) method.20 The 
solution procedure requires interpolation between various points, which is achieved by a quadratic 
upwind differencing scheme.21 The Qscretized equations are solved in an iterative procedure starting 
with the solution of the velocities using the current pressure field. Thereafter the pressure correction 
equation is solved which is derived from the equation of continuity. The pressure correction terms 
relate to velocity correction terms, which means that the pressure and velocity fields can be corrected 
so that they satisfy continuity. The whole procedure is repeated until the velocity and pressure fields 
converge to a final solution. The convergence criterion requires the velocity and pressure residuals to 
reduce by five orders of magnitude. The results were solved on a Hewlett-Packard workstation 
9000/700. The CPU time for a fully converged solution ranged from 3 to 9 h, increasing with 
Reynolds number for the single-phase solutions. The two-phase solutions were not solved directly, 
instead, the single-phase solutions were initially used and the inlet void fraction was gradually 
increased. The CPU time required to integrate and store a single-particle trajectory was about 0-7 s. 
The discretized equations were solved using a tridiagonal matrix solution algorithm2’ sweeping from 
the inlet to the outlet boundary. 

The inlet velocity terms are prescribed using a u-velocity parabolic profile. The outlet velocity terms 
are found by first-order extrapolation, which is relatively inaccurate but stable:3 however, the 
inaccuracy is reduced by placing the outlet condition some way downstream of the regions of interest. 
No-slip boundary conditions are applied at the solid boundanes. 

The particulate phase is solved using the equation of motion for a single particle. The equation of 
motion for the particles can be described using the Basset-Boussinesq-Oseen equation.24 The present 

Figure 2. Computational grid 
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study assumes that the particle is heavier than the surrounding fluid and that the equation of motion can 
be reduced to a modified Stokes law and the gravitational force” 

du 
p d t  

m >= 3xpdpf(uf - up) +mp (4) 

where mp is the mass of the particle and dp is the diameter of the particle. The coefficient f describes the 
influence of the ultra-Stokesian drag? 

f = 1 + 0.15Re;’687. ( 5 )  

The term Re, is the particle Reynolds number: 

The equation of motion can then be integrated to find the velocity of the particle and the particle 
position. The particle initially starts at a location on the inlet boundary. The equation of motion is 
integrated using a recently developed predictor-corrector exponential Lagrangian tracking scheme 
which is summarized in the Appendix. The global truncation error of the predictor-corrector 
exponential Lagrangian scheme is @A?), whereas the standard exponential Lagrangian scheme has a 
global e m r  of @At). 

are derived from the transfer of momentum between 
phases due to the drag force. This means that a control volume has an extra source term described by 
the time integral across the control volume: 

The particle momentum source terms S: and 

where the times tin and tout are when the particle enters and leaves the control volume respectively. The 
term ri, is the number of particles travelling along a particle track per second. This can be expressed 
as 

@ 4 L E T  INLETA 
y n, = 

ndp3 NL 

The term u p E T  is the particle inlet velocity, which is set to be the same as the surrounding fluid 
velocity. The term Ay is the height of the inlet control volume and NL is the number of starting 
positions in the control volume. The term amET is the inlet void fraction, which is set to be uniform 
across the inlet. The void fraction is defined as 

V a = J -  
V ’  (9) 

where Vp is the volume the particles displace in a unit of volume K 
The particle-laden flow is calculated by modifling the single-phase solution procedure previously 

discussed. This is achieved by incorporating the calculations of the particle velocity and trajectories 
into the source terms that form a particle source field, which acts on the flow field in a similar manner 
as the pressure field. The source term field needs to be continuous in the flow domain to achieve 
convergence. The source terms were dampened using underrelaxation to prevent divergence. This is a 
similar approach to that used by Durst et ~ 1 . ~ ~  

In order to achieve a continuous source field, a fairly large number of particle tracks have to be used. 
Most of the calculations in the present study used 10-20 particle starting locations per grid node. 
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0 .  

The present study considered various inlet Reynolds numbers, Stokes numbers and void fractions. 
The ratio of the particle density to the fluid density is 10, which is sufficient to allow the present 
assumption that drag and gravity are the only significant forces. The inlet Reynolds number was varied 
from Re = 50 to 700, similar to other numerical studies. The Stokes numbers studied varied from 
1 x lo-' to 1 x lo-'. The Stokes number is defined as 

Ppd,% Stk = - 
18p(2h) ' 

where uo is the average inlet velocity and 2h is the main channel height. The Stokes number was 
sufficiently low to prevent high particle Reynolds numbers which would invalidate the steady state 
laminar behaviour of the flow. The present study was concerned with studying the effects of changing 
the flow from the single-phase flow with increasing void fractions; the inlet void fraction was varied 
fiom 1 x lop6 to 5 x also, the single-phase flow was predicted. 

RESULTS 

Single-phase flow 

As discussed in the Introduction, the laminar single-phase flow problem has been extensively 
studied. The behaviour of the flow is briefly summarized below; for further details about the flow see 
References 1,6 and 7; see Reference 5 for a presentation of pressure fields. The flow behaves similarly 
to an open backward-facing step flow for low Reynolds numbers: the flow separates at the step and 
reattaches downstream at position xl. The position x1 increases almost linearly; the slight non-linear 
trend is caused by viscous drag along the upper boundary.8 For hgher Reynolds numbers the adverse 
pressure gradient is strong enough to create an upper recirculation region which is illustrated in Figure 
1. The upper recirculation region increases in size with increasing Reynolds number and its core moves 
downstream. The reattachment and separation positions are summarized in Figure 3 together with the 
experimental data of Armaly et ul.;' the results of Guj and Stella4 are also shown for a numerical 
comparison. For low Reynolds numbers the present predictions are in good agreement with the 
experimental data, but for higher Reynolds numbers the numerical predictions start to deviate from the 
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experimental data. The differences are probably caused by three-dimensional effects present in the 
experiment. 

Particle-laden Jlows 

The presence of the particles in the flow has, in the present study, the main parameters of Stokes 
number and inlet void fraction. The behaviour of the various results is considered by setting one of 
these parameters to a constant value and varying the other. 

The particles are introduced to the flow at the inlet; this has a significant effect on the low-Stokes- 
number particle results. Since low-Stokes-number particles are not affected by gravitational forces, 
then if a particle is initially assumed to be in a recirculation region, it will remain there and the void 
fraction will become uniform throughout the domain. However, if a low-Stokes-number particle is 
assumed to enter the flow at the inlet, it will not enter the recirculation regions provided that there is no 
exchange force such as Brownian motion. The current study takes the very idealistic view that no 
dispersion forces are present and therefore no particles should be present in the recirculation regions 
for very low Stokes numbers. 

Variation in Stokes number. The behaviour of the flow is dependent on the Stokes number: low- 
Stokes-number particles tend to follow the flow, which has the effect of reinforcing the freestream of 
the flow. This is because the inertia of the low-Stokes-number particles tend to be too small to allow 
the particles to penetrate the recirculation regions. The particles passing over the lower recirculation 
region have the effect of driving the lower recirculation region, which increases its size and vorticity. 
As the particles are not greatly affected by gravity, the increased lower recirculation region tends to 
reduce the adverse pressure gradient along the upper boundary. High-Stokes-number particles have a 
higher inertia and their behaviour is mostly affected by their initial velocity and the gravitational force. 
The gravitational force acts downwards as shown in Figure 1, similar to the study by Ruck and 
Mal~i0la.l~ As the high-Stokes-number particles are dominated by the effects of gravity, the behaviour 
of the flow is dependent on its direction of acceleration. The gravity force tends to make the particles 
deposit along the lower boundary and also within the lower recirculation region. Thls has a 
compression effect on the lower recirculation region and reduces its size. The downward movement of 
the particles encourages flow downwards along the channel. The downward movement increases the 
size of the upper recirculation region. The separation length x2 moves upstream with increasing Stokes 
number owing to the smaller lower recirculation region and the induced downward flow. 

The behaviour of the low- and hgh-Stokes-number particles is examined for Re=400 and 
amET = 5 x in Figure 4. The figure shows the variation in the reattachment and separation 
lengths with Stokes number. The reattachment and separation lengths for the single-phase flow are also 
shown in Figure 4 (broken lines) for a comparison with the particle-laden flow. The particle-laden flow 
has either larger or smaller lengths x1 and xz depending on the Stokes number. The values tend to 
intersect at a Stokes number between 1 x to 1 x which will be referred to as the critical 
Stokes number. The particle-laden flow length x3 is nearly always bigger than the single-phase flow 
length. This is because the upper recirculation region is either forced downstream by the low-Stokes- 
n u m h  particles or increased in size by the high-Stokes-number particles. 

At a higher Reynolds number a similar variation is observed and the variation in the reattachment 
and separation lengths with Stokes number is shown in Figure 5 for Re = 600 and (XINLET = 3 x 
Again the critical Stokes number is between 1 x In this case the particle-laden flow 
length g is always bigger than the single-phase flow length and remains fairly constant. 

Deposition rates along the lower boundary after the sudden expansion remain constant along the 
channel. The deposition rate along the lower boundary is directly proportional to the Stokes number 

to 1 x 
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(except for very large Stokes numbers where a considerable number of particles deposit in the inlet 
channel). Large-Stokes-number particle deposition rates decrease slightly near the sudden expansion, 
because the settling velocity is significant in comparison with the flow reversal in the recirculation 
region. 

x 3  

- 

- 

Variation in voidfmction. The most important parameter in t e r n  of the behaviour of the particles is 
the Stokes number; the differences caused by varying the void fraction are, however, dependent on the 
Stokes number. Varying the void fraction simply has the effect of increasing the differences which are 
dependent on the Stokes number. Obviously, low-void-hction results tend to single-phase results and 
void fractions of 1 x were found to give the same solution as the single-phase results. As the 
critical Stokes number is between Stk= 1 x the variation in the reattachment and 
separation lengths is examined for Srk= 1 x lop3 and 1 x in Figures 6 and 7 respectively for 
Re=400. The figures show how the differences increases with void fiaction, where the 

and 1 x 

X 



218 

12 

11- 

10- 

I. E. BARTON 

I I I l I I I 1 I  

x3 

- 

XI 

7 

‘10’ X 

I I I I I I I I I  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

‘1 O.’void fraction 
Figure 7. Variation in reattachment and separation lengths with void fraction for Re=400 and Stk= 1 x lo-’ 

Stk= 1 x particles drive the lower recirculation region and the Stk= 1 x lop2 particles shorten 
the lower recirculation region and increase the size of the upper recirculation region. 

The behaviour of the particles is reflected in the concentration plots of void hctions in Figures 8 
and 9 for a=3 x respectively (black for 
a=3 x Stokes number particles penetrate the 
lower recirculation region. The particles that penetrate are then pulled upstream by the recirculation 
region. The penetration of the lower recirculation region is caused by the gravitational force and by the 
upper recirculation region forcing particles downwards. Elsewhere in the channel the gravitational 
force has only a slight effect, which can be observed in Figure 9 in the region x = 16-20 where the 
downward movement is small. The 1 x Stokes number particles tend to stay in the main body of 
the flow. The particles are forced slightly downwards by the upper recirculation region and they fail to 
recover completely. A small number of particles enter the lower recirculation region near the lower 

Re=400 and Stk=l x lop3 and 1 x 
The figures clearly show how the 1 x 
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Figure 8. Concentration field of void fraction for Re =400, Stk= 1 x and amm=3 x 

-2  0 2 4 6 8 10 12 14 16 18 

Figure 9. Concentration field of void fraction for Re = 400, Stk= 1 x lo-* and amm = 3 x 

reattachment; they are transported upstream in the recirculation region almost all the way up to the 
backward-facing step wall. 

Inlet Reynolds numbe,: Different inlet Reynolds number results show that the particles have a fairly 
uniform effect on the flow except for very low Reynolds numbers. The Re = 400 results vary five times 
more than the Re = 100 results in terms of changes in reattachment and separation lengths. This is 
because the flow has such a small recirculation region and there is consequently only a small effect that 
can be caused by the behaviour of the particles. However, the behaviour of the particles varies greatly 
for low Reynolds numbers from particles depositing in the entrance channel to particles being carried 
successfully in the core of the flow and passing over the lower recirculation region. 

The medium Reynolds-number flows in the range Re = 400-500 are probably the most affected by 
the introduction of particles, partly because the mean stream velocity is strong enough to successfully 
transport low-Stokes-number particles and yet it fails to do so for higher-Stokes-number particles and 
also because the lower recirculation region is sufficiently large to be appreciably affected by the 
variation in the particle behaviour. In comparison, higher-Reynolds-number flows tend to successfully 
transport the particles past the lower recirculation region and the differences caused in the separation 
and reattachment lengths remains fairly constant. Higher-Reynolds-number flows therefore tend to 
produce constant deposition rates along the lower boundary, decreasing in magnitude with Reynolds 
number. The deposition rate near the sudden expansion is slightly lower for low-Reynolds-number 
flows for the same reason that high-Stokes-number particle profiles tend to decrease. 

CONCLUDING REMARKS 

Laminar particle-laden flows were calculated for a classical backward-facing step geometry. The 
Stokes number and void fraction were varied and several inlet Reynolds numbers were considered. 

The Stokes number of particles has a fundamental effect on the flow. Low-Stokes-number particles 
are successhlly transported in the main body of the flow and this reinforces the inertia of the flow. In 
the present study this has the effect of increasing the lower recirculation region and decreasing the 
upper recirculation region. High-Stokes-number particles are dominated by their initial inlet velocity 
and the gravitational force. In the present study the particles tend to deposit on the lower boundary, 
compressing the lower recirculation region. The induced downward flow and smaller lower 
recirculation region increase the size of the upper recirculation region. 

Increasing the void fiaction simply increased the expected differences from the single-phase flow. 
The differences are dependent on the Stokes number. 

Low-Reynolds-number flows vary greatly in behaviour with changes in Stokes number, but because 
of their small recirculation regions, changes in the lower reattachment length are usually quite small 
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compared with moderate-Reynolds-number flows. Higher-Reynolds-number flows tend to successfully 
transport the particles even with high Stokes numbers through the main channel. 

APPENDIX 

The equation of motion for a particle can be assumed to be of the form 
% = f + g ,  u -up 

at TP 

where up is the particle velocity, uf is the displaced fluid velocity, g is the gravitational term (which 
could be zero) and T~ is the particle relaxation time (which may be modified owing to ultra-Stokesian 
drag). The integration of the equation is achieved by assuming that uf varies quadratically over the 
present and previous time step. It can therefore be expressed in the form 

uf(t) = U; +At + B?, 

(1 2) 
$+1*(At"-1)2 + u;((At")' - (At"-')') - U;-'(A~")~ 

Atn-lAt.(AP-l + At.) A =  

uf-'At' + $+'*At'-' - $(At" + At"-') 
Atn-lAt"(Atn-l + Atn) B =  

where the superscript n refers to the current time level. The term $+'* is the predicted fluid velocity at 
the next time level. The scheme initially predicts the particle position by assuming a constant fluid 
velocity over the time step, e.g. A = 0 and B = 0. The term u;+'* can then be predicted and the scheme 
next predicts the particle position assuming the above quadratic temporal variation. The particle 
position is re-predicted and the term G+l* is updated. The procedure is repeated once more and the 
particle velocity and position are calculated. 

The general solutions of the particle velocity and position are expressed as 

,it' = U i e x p ( F )  +UF[l -exp(?)]+A(At-zp[l -exp(?)]] 

<p"=Xnp-zp(Ufn-Ui) 1-exp - +U,"At+A --zpAt+< 1-exp - [ (31 (A: [ (311 
T,A? +2~$ t  - 27; 
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